Модуль линейной скорости формула

Содержание

Линейная скорость: формула нахождения

С точки зрения физики абсолютного покоя не существует. Каждое тело и частицы, которые его составляют, находятся в постоянном движении друг относительно друга. Важной кинематической величиной, характеризующей движение, является скорость. В данной статье приведем формулы линейной скорости для различных типов перемещения тел в пространстве.

Движение по окружности: формулы и расчеты

Перемещение тел по окружности достаточно распространено в нашей жизни и в природе. Яркими примерами этого типа перемещения являются вращения ветровых мельниц, планет вокруг своих звезд и колес транспортных средств. В данной статье рассмотрим, какими формулами движение по окружности тел описывается.

Движение точки по окружности. Линейная и угловая скорости точки. Центростремительное ускорение точки

blank

Что такое линейная скорость?

Речь идет о физической величине, которая показывает, какое расстояние в пространстве проходит тело за единицу времени. Как правило, скорость обозначают буквой v¯, где символ черты говорит о том, что она является векторной величиной. Измеряется скорость в метрах в секунду (м/с), километрах в час (км/ч), милях в час (мил/ч) и других единицах, предполагающих отношение расстояния ко времени.

Вектор скорости v¯ показывает направление реального перемещения тела. Этим он отличается от вектора ускорения, который направлен в сторону действующей силы, но не в сторону движения тела, хотя они могут совпадать.

Урок 05. Лекция 05. Равномерное движение по окружности

  • Печать
  • E-mail

Равномерное движение по окружности

Криволинейное движение – движение, траекторией которого является кривая линия. Любой участок криволинейного движения приближённо можно представить в виде дуги окружности. Поэтому движение тела по окружности с постоянной по модулю скоростью является простейшим видом криволинейного движения.

Траектория движенияокружность. Вектор скорости всегда направлен по касательной к окружности. Величина скорости постоянная, направление скорости всё время меняется.

Ускорение при движении по окружности называют центростремительным. Оно всегда, в каждой точке траектории, направлено к центру окружности. Центростремительное ускорение не меняет модуля скорости, но изменяет направление скорости.

Величины, характеризующие движение по окружности с постоянной по модулю скоростью.

Число полных оборотов за время t. Обозначается N .

Период обращения Т – время одного полного оборота (время, за которое тело совершает один полный оботот, т.е. поворачивается на угол . Единица измерения – секунда [с].

T=t/N T= 1

Частота v (греческая буква “ню”) – число полных оборотов за 1 с. Единица измерения герц [Гц]

Линейная скорость υ показывает, какой путь проходит тела за 1 секунду.

При движении тела по окружности одной из характеристик движения является угловое перемещние или угол поворота.

Угловое перемещение

S – линейное перемещение

φ – угловое перемещение

Единица угла поворота – рад (радиан).

1 радиан – это угол, опирающийся на дугу окружности, равную её радиусу.

Угловая скорость ω тела в данной точке круговой траектории – это физическая величина, которая определяется углом поворота за удиницу времени. Она показывает на какой угол поворачивается тело за 1 секунду. Угловая скорость характеризует скорость вращения материальной точки вокруг центра вращения.

Угловая скорость определяется по формуле:

Δφ – угол поворота материальной точки за время Δt, угловое перемещение

Δt – промежуток времени, за которое это угловое перемещение было совершено.

Угловая скорость измеряется в рад/с.

Связь между модулем линейной скорости υ и угловой скоростью ω:

Модуль центростремительного ускорения связан с линейной υ и угловой ω скоростями соотношениями:

Угловая скорость.

Рассмотрим равномерное вращение точки в декартовой системе координат. Поместим начало координат в центре окружности (рис. 1 ).

Рис. 1. Равномерное движение по окружности

Пусть – начальное положение точки; иными словами, при точка имела координаты . Пусть за время точка повернулась на угол и заняла положение .

Отношение угла поворота ко времени называется угловой скоростью вращения точки:

Угол , как правило, измеряется в радианах, поэтому угловая скорость измеряется в рад/с. За время, равное периоду вращения, точка поворачивается на угол . Поэтому

Сопоставляя формулы (1) и (3) , получаем связь линейной и угловой скоростей:

Как определить угловую скорость: что это за величина?

С физико-математической точки зрения эту величину можно определить следующим образом: это данные, которые показывают, как быстро некая точка осуществляет оборот вокруг центра окружности, по которой она движется.

Эта, казалось бы, чисто теоретическая величина, имеет немалое практическое значение при эксплуатации автомобиля. Вот лишь несколько примеров:

  • Необходимо правильно соотносить движения, с которыми вращаются колёса при повороте. Угловая скорость колеса автомобиля, движущегося по внутренней части траектории, должна быть меньше, чем у внешнего.
  • Требуется рассчитывать, насколько быстро в автомобиле вращается коленвал.
  • Наконец, сама машина, проходя поворот, тоже имеет определённую величину параметров движения – и от них на практике зависит устойчивость автомобиля на трассе и вероятность опрокидывания.

  • Фейсбук
  • Гугл+
  • ЖЖ
  • Blogger

Перемещение по окружности и по прямой линии в физике

Вращение колеса обозрения

В физике вопросами движения занимается кинематика. Она устанавливает связь между величинами, описывающими этот процесс. В динамике также уделяется внимание движению, однако она ориентирована на описание причин его возникновения. Другими словами, если для кинематики главными физическими величинами являются путь и скорость, то для динамики – это действующие на тела силы.

Интерес: определение, понятие, типы и функции Вам будет интересно: Интерес: определение, понятие, типы и функции

В физике принято выделять два идеальных типа траекторий движения:

  • прямая линия;
  • окружность.

Математический аппарат для описания движения по обоим типам траекторий развит настолько хорошо, что понимание формул, например для прямолинейного движения, автоматически приводит к пониманию выражений для движения по окружности. Единственная принципиальная разница между формулами указанных типов перемещения заключается в том, что для движения по окружности удобно использовать угловые характеристики, а не линейные.

Педагогическая система Макаренко: принципы и компоненты Вам будет интересно: Педагогическая система Макаренко: принципы и компоненты

Далее в статье будем рассматривать исключительно кинематические формулы движения по окружности тел, не вдаваясь в подробности динамики.

Мгновенная и средняя скорости

Движение автомобиля

Как найти линейную скорость? Формулу, согласно определению величины, можно записать следующую:

Где dl¯ – вектор перемещения тела за время dt. Эта скорость называется мгновенной, поскольку рассчитывается за чрезвычайно короткий промежуток времени dt. Мгновенная скорость в действительности является величиной не стабильной и постоянно меняющейся. Например, представим, что по дороге движется автомобиль. На первый взгляд можно полагать, что в любой момент времени его мгновенная скорость будет постоянной, однако, это не так. Мгновенная скорость испытывает колебания. Если спидометр автомобиля достаточно чувствителен, то он фиксирует эти колебания.

Формула линейной скорости средней ничем не отличается от таковой для мгновенной, однако, измеряется она за более длительный промежуток времени Δt:

В примере с автомобилем выше, хотя мгновенная скорость испытывает колебания, средняя скорость остается постоянной с определенной точностью на всем участке пути Δl¯.

При решении задач, как правило, используют среднюю скорость. Мгновенная же величина имеет смысл только в случае движения с ускорением.

Формулы средней скорости

Вектор средней скорости ($leftlangle overline
ight
angle $) при движении между двумя точками определяют как:

где в скобках у вектора средней скорости указан промежуток времени, для которого найдена средняя скорость; $Delta overline$ – вектор перемещения точки; $Delta t$- время движения.

При неравномерном движении средняя скорость для разных промежутков времени не одинакова. Устремляя $Delta t$ к нулю, мы получим, что средняя скорость стремится к величине мгновенной скорости.

Иногда при вычислении средней скорости (ее называют средне путевой) применяют другую формулу:

[leftlangle v
ight
angle =fracleft(11
ight),]

где $s$- весь путь пройденный точкой; $t$ – все время ее движения. В этом случае средняя скорость – это скаляр.

Закон движения.

Найдём теперь зависимость координат вращающейся точки от времени. Видим из рис. 1 , что

Но из формулы (2) имеем: . Следовательно,

Формулы (5) являются решением основной задачи механики для равномерного движения точки по окружности.

Формула времени, за которое вращается точка по окружности заданного радиуса

Для того, чтобы рассчитывать угловую скорость, используется следующая формула:

ω = ∆φ /∆t

  • ω (читается «омега») – собственно вычисляемая величина.
  • ∆φ (читается «дельта фи») – угол поворота, разница между угловым положением точки в первый и последний момент времени измерения.
  • ∆t (читается «дельта тэ») – время, за которое произошло это самое смещение. Точнее, поскольку «дельта», это означает разницу между значениями времени в момент, когда было начато измерение и когда закончено.

Приведённая выше формула угловой скорости применяется лишь в общих случаях. Там же, где речь идёт о равномерно вращающихся объектах или о связи между движением точки на поверхности детали, радиусом и временем поворота, требуется использовать другие соотношения и методы. В частности, тут уже будет необходима формула частоты вращения.

Угловая скорость измеряется в самых разных единицах. В теории часто используется рад/с (радиан в секунду) или градус в секунду. Однако эта величина мало что означает на практике и использоваться может разве что в конструкторской работе. На практике же её больше измеряют в оборотах за секунду (или минуту, если речь идёт о медленных процессах). В этом плане она близка к частоте вращения.

  • Фейсбук
  • Гугл+
  • ЖЖ
  • Blogger

Угловые характеристики движения: угол поворота

Вращение валов

Прежде чем записывать формулы движения по окружности в физике, следует ввести величины, которые будут фигурировать в этих формулах.

Начнем с угла поворота. Будем обозначать его греческой буквой θ (тета). Поскольку вращение предполагает движение точки вдоль одной и той же окружности, то значение угла поворота θ за определенный промежуток времени можно использовать для определения количества оборотов, которое сделала эта точка. Напомним, что вся окружность равна 2*pi радиан, или 360o. Тогда формула для числа оборотов n через угол θ примет вид:

Академик Рыбаков Б.А.: биография, археологическая деятельность, книги Вам будет интересно: Академик Рыбаков Б.А.: биография, археологическая деятельность, книги

Здесь и далее во всех формулах угол выражается в радианах.

Пользуясь известным углом θ, также можно определить линейное расстояние, которое точка прошла вдоль окружности. Это расстояние будет равно:

Здесь r – радиус рассматриваемой окружности.

Самые популярные записи

  • blankСвобода и необходимость в человеческой деятельности. Свобода и ответственность. (1 166)
  • blankЕГЭ по обществознанию: мышление и деятельность; потребности и интересы (1 134)
  • blankНаука. Основные особенности научного мышления. Естественные и социально гуманитарные науки (1 068)
  • blankОбъединение русских земель вокруг Москвы. Создание единого Русского государства (1 031)

Центростремительное ускорение.

Теперь нас интересует ускорение вращающейся точки. Его можно найти, дважды продифференцировав соотношения (5) :

С учётом формул (5) имеем:

Полученные формулы (6) можно записать в виде одного векторного равенства:

где – радиус-вектор вращающейся точки.

Мы видим, что вектор ускорения направлен противоположно радиус-вектору, т. е. к центру окружности (см. рис. 1 ). Поэтому ускорение точки, равномерно движущейся по окружности, называется центростремительным.

Кроме того, из формулы (7) мы получаем выражение для модуля центростремительного ускорения:

Выразим угловую скорость из (4)

и подставим в (8) . Получим ещё одну формулу для центростремительного ускорения:

Помощь

© 2021 StudyWay. Все права защищены.

Скорость при движении по прямой с ускорением

Прямолинейное движение с ускорением

Когда появляется внешняя сила, то ее действие на тело приводит к изменению скорости тела. В динамике эта ситуация описывается вторым законом Ньютона:

Если действие силы F¯ происходит на покоящееся изначально тело массой m, то формула нахождения линейной скорости в любой момент времени t примет вид:

В данном случае обе векторные величины направлены в одну и ту же сторону. Эта формула может применяться для описания разгона какого-либо транспортного средства.

Теперь предположим, что автомобиль двигался с некоторой скоростью v0¯, а затем начал останавливаться. В этой случае соответствующее кинематическое уравнение примет вид:

Поскольку модуль скорости |v¯| авто будет уменьшаться со временем, в скалярной форме это равенство запишется так:

В данном случае вектора скорости и ускорения направлены в противоположных направлениях.

Все формулы линейной скорости, приведенные в этом пункте, описывают прямолинейное движение с постоянным ускорением.

Угол поворота и период обращения

Гораздо более часто, чем угол поворота, используется частота вращения, которая показывает, сколько оборотов делает объект за заданный период времени. Дело в том, что радиан, используемый для расчётов – это угол в окружности, когда длина дуги равна радиусу. Соответственно в целой окружности находится 2 π радианов. Число же π – иррациональное, и его нельзя свести ни к десятичной, ни к простой дроби. Поэтому в том случае, если происходит равномерное вращение, проще считать его в частоте. Она измеряется в об/мин – оборотах в минуту.

Если же дело касается не длительного промежутка времени, а лишь того, за который происходит один оборот, то здесь используется понятие периода обращения. Она показывает, как быстро совершается одно круговое движение. Единицей измерения здесь будет выступать секунда.

Связь угловой скорости и частоты вращения либо периода обращения показывает следующая формулы:

ω = 2 π / T = 2 π *f,

  • ω – угловая скорость в рад/с;
  • T – период обращения;
  • f – частота вращения.

Получить любую из этих трёх величин из другой можно с помощью правила пропорций, не забыв при этом перевести размерности в один формат (в минуты либо секунды)

Вращение тел

Линейная и угловая скорость

Под вращением понимают тип движения, при котором траектория перемещающегося тела представляет собой окружность. Вращение может происходить вокруг оси или вокруг фиксированной точки. Вращение колеса, планет по своим орбитам, спортсменов во время соревнований по фигурному катанию – все это примеры указанного типа движения.

По аналогии с линейным перемещением, главной формулой динамики вращения является следующая:

Здесь M и I – моменты силы и инерции, соответственно, α – ускорение угловое.

Для описания вращения удобно пользоваться не линейной, а угловой скоростью. Она определяется так:

Где θ – угол, на который тело повернулось за время t. С записанным ускорением α скорость ω связана следующим равенством:

Для измерения всех угловых величин используются радианы.

Примеры задач с решением

Задание. Положение материальной точки, задано радиус-вектором $overlineleft(t
ight),$ который является функцией времени: $overlineleft(t
ight)=^4overline+t^2overline,$ где $overline$ и $overline$ – единичные векторы осей X и Y (рис.1). Чему равен модуль скорости точки в момент времени $t=1$c?

Решение. В качестве основы для решения задачи воспользуемся формулой скорости:

Подставим в выражение (1.1) $overlineleft(t
ight)=t^4overline+3t^2overline,$ получим:

[overline=frac

left(^4overline+t^2overline
ight)=8t^3overline+2toverline left(1.2
ight).]

Из уравнения (1.2) имеем:

Формула линейной скорости, пример 1

Используя теорему Пифагора, величину скорости вычислим как:

Ответ. $v=sqrtfrac$

Задание. С какой скоростью должен лететь самолет с востока на запад на широте $varphi $, чтобы за окном иллюминатора всегда было светло? Радиус Земли считать равным R.

Решение. Сделаем рисунок.

Формула линейной скорости, пример 2

Самолет летит по окружности (рис.2), радиус которой найдем как:

Для того чтобы не наступала ночь, тело должно двигаться с угловой скоростью, которая равна скорости вращения Земли вокруг своей оси ($omega $). Для вычисления скорости движения самолета воспользуемся формулой:

Угловую скорость вращения Земли найдем, зная, что период вращения Земли составляет 24 ч ($T=24 ч$), следовательно, величину угловой скорости вращения Земли можно считать известной и равной:

Формула линейной скорости вращения

Вращение фигуриста

Выше отмечалось, что вращение удобно описывать в угловых характеристиках. Тем не менее в некоторых случаях важно знать, чему равна линейная скорость по окружности. Формула для этого случая приведена ниже:

Здесь r – радиус окружности, равный расстоянию от любой точки траектории тела до оси вращения. Связывающую линейную и угловую скорость формулу получить несложно самостоятельно. Для этого достаточно рассмотреть, какое расстояние по окружности преодолеет тело за известное время t.

Приведенное выражение можно использовать для вычисления линейных скоростей космических тел, например, нашей Земли, вращающейся вокруг Солнца.

Чему равна угловая скорость в конкретных случаях?

Приведём пример расчёта на основе приведённых выше формул. Допустим, имеется автомобиль. При движении на 100 км/ч его колесо, как показывает практика, делает в среднем 600 оборотов за минуту (f = 600 об/мин). Рассчитаем угловую скорость.

Для начала переведем об/мин в об/с. Для этого разделим 600 на 60 (число секунд в минуте) и получим 10 об/с . Попутно мы получили и период обращения: эта величина является обратной по отношению к частоте и при измерении в секундах 0,1 с.

Далее используем формулу:

Поскольку точно выразить π десятичными дробями невозможно, результат примерно равен будет 62,83 рад/с.

  • Фейсбук
  • Гугл+
  • ЖЖ
  • Blogger

Связь между угловыми и линейными величинами

Линейные и угловые характеристики

При рассмотрении понятия угла поворота θ уже была приведена формула, которая его связывает с линейным расстоянием L. Здесь же рассмотрим аналогичные выражения для скорости ω и ускорения α.

Линейная скорость v при равномерном движении определяется как расстояние L, пройденное за время t, то есть:

Подставляя сюда выражение для L через θ, получаем:

Мы получили связь между линейной и угловой скоростью. Важно отметить, что удобство использования угловой скорости связано с тем, что она не зависит от радиуса окружности. В свою очередь, линейная скорость v возрастает линейно с увеличением r.

Остается записать связь между линейным ускорением a и его угловым аналогом α. Чтобы это сделать, запишем выражение для скорости v при равноускоренном движении без начальной скорости v0. Получаем:

Подставляем сюда полученное выражение связи между v и ω:

Как и скорость, линейное ускорение, направленное по касательной к окружности, зависит от радиуса.

Линейная скорость и центростремительное ускорение

Скорость является величиной векторной. Это означает, что тело получает ускорение не только при изменении модуля величины v, но и при изменении ее направления. Последняя ситуация реализуется во время вращения. Вектор мгновенной скорости тела всегда направлен по касательной к окружности. Если за равные промежутки времени тело описывает равные углы относительно центра вращения, то такое движение является равномерным с точки зрения модуля скорости.

Отклонение от прямолинейного движения во время вращения происходит за счет действия центростремительной силы, вызывающей центростремительное ускорение. Оно направлено всегда перпендикулярно скорости, поэтому изменить ее модуль не может. Ускорение центростремительное ac можно вычислить по формуле:

Абсолютная величина ускорения ac показывает, насколько велики центробежные силы, связанные с инерцией вращающегося тела. Практическим примером является занос автомобиля во время крутого поворота. Заметим, что с уменьшением радиуса ac растет медленнее, чем с увеличением линейной скорости.

Ускорение центростремительное

Выше уже было сказано несколько слов об этой величине. Здесь приведем формулы, которые можно использовать для ее вычисления. Через скорость v выражение для центростремительного ускорения ac имеет вид:

Через угловую скорость его можно записать так:

Величина ac не имеет никакого отношения к тангенциальному ускорению a. Центростремительное ускорение обеспечивает поддержание вращающегося тела на одной окружности.

Задача на определение угловой скорости вращения планеты

Вращение планеты Меркурий

Известно, что ближе всего к солнцу находится Меркурий. Полагая, что он вращается по окружности вокруг светила, мы можем определить его угловую скорость ω.

Для решения задачи следует обратиться к справочным данным. Из них известно, что планета делает полный оборот вокруг светила за 87 дней 23,23 часа земных. Это время называется периодом обращения. Учитывая, что движение происходит с постоянной угловой скоростью, запишем рабочую формулу:

Остается перевести время в секунды, подставить значение угла θ, соответствующее полному обороту (2*pi), и записать ответ: ω = 8,26*10-7 рад/c.

Основные характеристики и формулы

Так как за период

угловое перемещение рад, угловая скорость связана с периодом и частотой вращения:

Рис.1. Линейное и угловое перемещение при равномерном движении точки по окружности

Наряду с понятием угловой скорости для характеристики равномерного движения по окружности сохраняет смысл привычное для нас понятие скорости движения точки вдоль траектории, которое в данном случае называется линейной скоростью.

Модуль линейной скорости равен отношению длины дуги окружности

к промежутку времени, за который эта дуга пройдена.

Линейная скорость тела, которое движется по окружности, не изменяется по модулю, а все время изменяется по направлению, и в любой точке траектории направлена по касательной к дуге этой окружности (рис.1).

Угловая и линейная скорости связаны между собой соотношением:

Кинематическое уравнение или закон движения точки по окружности:

Ускорение, момент и связь их с массой

Помимо приведённых выше величин, с вращением связано ещё несколько моментов. Учитывая же, сколько в автомобиле крутящихся деталей разного веса, их практическое значение нельзя не учесть.

Равномерное вращение – это важная вещь. Вот только нет ни одной детали, которая бы всё время крутилась равномерно. Число оборотов любого крутящегося узла, от коленвала до колеса, всегда в конечном итоге растёт, а затем падает. И та величина, которая показывает, насколько выросли обороты, называется угловым ускорением. Поскольку она производная от угловой скорости, измеряется она в радианах на секунду в квадрате (как линейное ускорение – в метрах на секунду в квадрате).

С движением и её изменением во времени связан и другой аспект – момент импульса. Если до этого момента мы могли рассматривать только чисто математические особенности движения, то здесь уже нужно учитывать то, что каждая деталь имеет массу, которая распределена вокруг оси. Он определяется соотношением начального положения точки с учётом направления движения – и импульса, то есть произведения массы на скорость. Зная момент импульса, возникающий при вращении, можно определить, какая нагрузка будет приходиться на каждую деталь при её взаимодействии с другой

Оцените статью
Рейтинг автора
4,8
Материал подготовил
Максим Коновалов
Наш эксперт
Написано статей
127
А как считаете Вы?
Напишите в комментариях, что вы думаете – согласны
ли со статьей или есть что добавить?
Добавить комментарий